Квантовые компьютеры – объясняем, чем отличаются от классической вычислительной техники. Чем квантовые компьютеры отличаются от обычных

Так что теперь вопрос считанных лет, когда квантовые компьютеры начнут использоваться повсеместно! IBM, например, только что анонсировали что в 2023 году создадут коммерческий квантовый компьютер с 1121 кубитами!

Как работает квантовый компьютер и какие проблемы существуют?

Обычные компьютеры работают на основе кремниевых чипов, строение и принцип действия квантовых компьютеров отличаются, они работают на основе законов квантовой механики. То есть вычислительные действия выполняются не по классическим алгоритмам, а за счет процессов квантовой природы, например, квантовой запутанности или квантового параллелизма. В качестве базы используется кубит, так называют систему, в которой количество частиц соответствует импульсу, а энергетическое состояние, которое меняется, аналогично координате. Этот фазовый кубит сейчас активно изучается наукой. Известно, что он может содержать единицу и ноль одновременно, то есть фактически быть сразу в двух состояниях. Благодаря данной особенности квантовый компьютер выполняет вычислительные задачи в тысячи раз быстрее обычного.

В этой статье мы рассмотрим принцип работы такого устройства, разберем, чем оно отличается от обычного компьютера. Ты узнаешь, зачем нужны квантовые компьютеры, существует ли они на сегодняшний день, какие проблемы у такого решения.

Из-за устойчивого выражения “квантовый компьютер” люди часто воспринимают устройство неправильно. Они представляют обычный компьютер, ноутбук, реже — как суперкомпьютер. Но при этом не являются компьютером в привычном понимании.

Как работает

Как работает квантовый компьютер и какие проблемы существуют?

Устройство рассчитано на обработку и передачу данных, оно является квантовой вычислительной системой. Для работы используются квантовые биты — кубиты, которые в одно и то же время могут быть нулем и единицей. Количество кубитов растет — число обрабатываемых параметров увеличивается, речь идет о росте в геометрической прогрессии.

Кубит также принимает любые сочетания 0 и 1, если их несколько, то при перемене значения одного меняются и все остальные. Ввиду особенности все решения просчитываются одновременно. Для обычного процессора характерны бинарные вычисления, то есть он просчитывает значения последовательно. Это слишком долго, поэтому была придумана многопоточность. Ее суть в параллельном запуске расчетов, для этого делается предвыборка, это предугадывание всех потенциальных вариаций ветвлений и проведение с ними расчетов предварительно.

Если выразить принцип работы квантового компьютера простыми словами, то он будто бы знает все вероятные ответы заранее, и в каждом случае остается лишь высчитать состояние и выбрать из многих единственный верный. Этот выбор — основная часть работы.

Для этого существуют специальные математические операторы, например оператор Грувера, который позволяет нам определять правильные результаты вычислений квантовых систем! Это специальная функция, которая среди всех возможных вариантов находит нужный нам.

Что это за «квант»?

Квант – это не физический объект. В физике термин «квант» используется для описания наименьшей возможной части чего-либо. Это может быть «квант мощности», «квант времени» или «квант частицы». Следуя этому пути, мы придём к таким терминам, как «квантовая физика» и «квантовая механика», то есть к областям науки, имеющим дело с минимально возможными взаимодействиями или системами – на уровне атомов и даже отдельных кварков.

Мы подошли к кубиту (квантовому биту), то есть «наименьшей и неделимой единице квантовой информации». В то же время мы подходим к первой точке касания, которая говорит нам о сходствах и различиях в том, как классические компьютеры (с использованием битов) и квантовые компьютеры (с использованием кубитов) выполняют вычисления.

В классических компьютерах каждая часть информации хранится в виде последовательности нулей и единиц. Вкл/выкл – только такую информацию понимают и интерпретируют современные компьютеры, консоли, смартфоны, умные часы и умные телевизоры. То же самое и с операциями, выполняемыми с этой информацией. Просматриваем ли мы фотографии из отпуска, болтаем с друзьями в чате, играем в последнюю игру или выполняем сложные криптографические вычисления – всё происходит в двоичном формате, где либо 0, либо 1, и ничего больше.

Насколько неэффективна эта система, мы можем увидеть, когда подойдем к её пределам. И независимо от того, не хватает ли нам места на смартфоне для нового селфи или ученым приходится неделями создавать математические модели развития пандемии, вина кроется в том, что для этого нужно слишком много нулей и единиц, а места для их хранения и ресурсов для обработки не хватает.

Кубит решает эту проблему! Этот способ хранения информации использует свойства квантовой физики, которые позволяют ему оставаться в суперпозиции. Кубит может принимать любое значение от 0 до 1 – он обладает свойствами всего спектра и может составлять, например, 15 процентов в данный момент и 85 процентов – в следующий. Теоретически это позволяет хранить гораздо больше информации или ускорить вычисления, но также связано с множеством проблем, которые сложно контролировать и даже понять.

Ещё одна особенность квантовых компьютеров, которая позволяет дополнительно масштабировать вычислительную мощность – это использование квантовой запутанности. Это состояние, когда два кубита соединены друг с другом, и всякий раз, когда мы наблюдаем за одним из них, другой будет находиться в точно таком же состоянии. Запутанность позволяет группировать кубиты в ещё более эффективные единицы для записи и обработки информации.

Проблемы квантовых компьютеров

У квантовых компьютеров есть одна огромная проблема. В силу своих особых возможностей кубиты нуждаются в достаточно спокойной среде, чтобы можно было точно считывать с них любые данные. Каждое, даже самое маленькое нарушение сделает невозможным определение точного положения.

В случае классических компьютеров подобная проблема также играла важную роль в прошлом, но сегодня она настолько незначительна, что часто игнорируется даже в академической науке.

Для классических устройств вероятность ошибки составляет, примерно, 1 из 10 17 бит. В случае квантовых компьютеров это – один из нескольких сотен. И это в ситуации, когда квантовые компьютеры работают в максимально изолированных условиях и при температуре −272 градуса Цельсия, то есть немного выше абсолютного нуля. Любые колебания температуры, изменение электромагнитного поля и даже движение разрушают весь расчёт.

Другая проблема – «нестабильность» квантовых состояний. Каждый раз, когда мы измеряем квантовое состояние или хотим его нарушить, оно возвращается в одно из двух положений. Квантовое состояние распадется. Этот процесс называется квантовой декогеренцией.

Представьте себе это так: квантовый компьютер – это опытный математик, который выполняет сложные вычисления, а результаты составляют от 0 до 1 миллиона. Мы, в свою очередь, ребёнок, который понимает только то, что может быть много или мало чего-то. Каждый раз математик может получить разные результаты, например, 184662 или 356670, но в противоречии с нашим пониманием мира каждый из них будет классифицирован в один из двух «мешков» – маленький (0) или большой (1), без промежуточного значения. Это квантовая декогеренция.

Принцип действия квантового компьютера известен, и это очень перспективная отрасль. Существующие на данный момент устройства остаются экспериментальными. Посмотрим, что изменится в ближайшие годы.

Чем квантовый компьютер отличается от обычного?

Поскольку ученые строят квантовые компьютеры на нескольких разных платформах (их мы обсудим чуть ниже), внешний вид таких машин также отличается друг от друга.

Криостат (система охлаждения), подключенный к квантовому компьютеру Microsoft

Современные квантовые компьютеры на сверхпроводниках внешне больше напоминают люстры в стиле стимпанк и функционируют при определенной температуре: для каждого уровня машины нужен собственный микроклимат. Если в помещении становится теплее или холоднее, вычислительная машина становится бесполезной. Для работы квантовых компьютеров применяют систему охлаждения на основе жидкого гелия. Сам компьютер заключен в цилиндрический корпус с насосами системы охлаждения. К этой конструкции подключен ряд традиционных компьютеров для решения задач. Внутри квантовый компьютер состоит из соединений и труб, которые передают сигналы в квантовый «мозг» машины.

Для решения любых алгоритмических задач квантовые компьютеры используют кубиты, которые при обмене информацией принимают значение 0 или 1. Однако в отличие от битов, кубиты могут одновременно находиться в состоянии 0 и 1, благодаря свойству квантовых объектов — суперпозиции. Именно это способствует ускорению решения задач на десятки порядков быстрее классических вычислительных машин.

Если классический компьютер разложит число с 500 десятичными знаками на простые множители за 5 млрд лет, то квантовый аналог в теории управится за 18 секунд.

Кубиты не перебирают последовательно все возможные варианты состояний системы, комбинации, как обычный компьютер, а делают вычисления моментально. Это свойство может применяться при поиске информации по базам данных, составлениях маршрута, моделировании поведения сложных молекул и синтезе материалов. Решение задач, для которых нужно перебрать сотни и тысячи вариантов, ускоряется во множество раз.

Кубиты, в отличие от битов, могут находиться в суперпозиции - то есть одновременно принимать значения 0 и 1  

Кубиты, в отличие от битов, могут находиться в суперпозиции — то есть одновременно принимать значения 0 и 1

Сейчас многокубитные квантовые компьютеры стоят миллионы долларов, а их изготовление — сложный процесс. Квантовый компьютер сегодня — это установка, которая не предполагает персональное использование на дому. Чтобы работать с этим классом устройств, необходимо обладать специальными компетенциями и уметь раскладывать задачи на понятный машине язык.

Какие платформы обсуждаются в связке с квантовыми компьютерами?

Квантовые компьютеры строятся на четырех основных платформах: сверхпроводящих цепочках, ионах, нейтральных атомах и фотонах. На самом деле платформ существует намного больше: еще есть интегральная оптика, квазичастицы (экситоны, поляритоны, магноны и др.), примесные атомы, молекулы, полупроводниковые квантовые точки и центры окраски. Один компьютер может быть создан на базе нескольких платформ. Все они могут работать отдельно друг от друга.

Квантовая платформа — это физический объект, похожий на чип, на котором размещается и сохраняется квантовое состояние кубитов.

Еще несколько лет назад все коммерческие вычислительные устройства работали исключительно на сверхпроводящих цепочках. В отличие от других типов кубитов они хорошо масштабируются, стабильны в работе, позволяют контролировать параметры и легче управляются. Однако сейчас мы видим, что международное квантовое сообщество стало все больше интересоваться ионами.

Первый коммерчески доступный квантовый компьютер на ионах представил в декабре 2018 года технологический стартап IonQ. Как заявили сами разработчики, построенная ими система способна выполнять более сложные вычисления, чем все существующие на рынке аналоги. А в конце 2020 года американская корпорация Honeywell заявила, что ей удалось создать наиболее точный квантовый компьютер на ионах. Вместе с тем, у этой технологии есть и недостатки: ионные компьютеры сложно масштабировать из-за аномального нагрева.

Также в тройку наиболее перспективных платформ для реализации универсального квантового вычислителя входят ультрахолодные атомы. Разработкой таких систем чаще всего занимаются академические институты и университеты — например, Институт прикладной физики Российской академии наук в Нижнем Новгороде.

А теперь представьте, что у вас не один человек, который кидает монетку, а миллион разных людей, в разных местах, по-разному кидают монетки. И вам надо рассчитать что выпадет у всех! Вот примерно настолько сложная эта модель о взаимодействии белков.

Суть и свойства кубитов

Кубиты – это мельчайшие квантовые объекты, подчиняющиеся совсем другим законам. Их главное отличие от бит – это способность находиться одновременно в двух состояниях. Если представить это суперсостояние образно, то его можно сравнить с одновременно открытой и наглухо закрытой дверью или светящейся и не светящейся лампой. В применении к двоичной системе – это одномоментно 1 и 0, что кажется невероятным.

Квантовая наука утверждает, что суперпозиция кубита остается таковой до тех пор, пока ее не измерили. На образном примере – это подброшенная монетка. Пока она летит в воздухе, она еще не определяет ситуацию, в ней на равных конкурируют орел и решка. Но, стоит вам поймать ее рукой, ее состояние будет определено.

С какими сложностями столкнулись ученые

Решить, какие из квантовых объектов наиболее целесообразно использовать для новых технологий, чтобы они выступали в роли кубитов, ученые пока что еще не смогли. Они рассматривают варианты с фотонами, электронами и другими частицами. Другая проблема заключается в нестабильности кубитов. Для контроля за этими частицами нужно очень мощное охлаждение.

квантовый компьютер

Оцените статью
Новости, гайды, обзоры, рецензии все о лучших компьютерных играх