– характерна полная оптическая прозрачность. Он поглощает всего 2,3% света и оптически прозрачен в широком диапазоне от UV до far-IR,
Что такое графен и как он изменит нашу жизнь?
Вокруг графена образовалось немало хайпа — и среди ученых, и среди бизнеса. Но графен так и не стал нашей повседневной реальностью. Почему? Разбираемся вместе с автором YouTube-канала «Индустрия 4.0» Николаем Дубининым
Впервые о графене заговорили в 2004 году, когда Андрей Гейм и Константин Новоселов — британские ученые российского происхождения — опубликовали статью в журнале Science 1. В ней говорилось о новом материале, который получили с помощью обычного карандаша и скотча. Ученые просто снимали клейкой лентой слой за слоем, пока не дошли до самого тонкого — в один атом. В 2010-м за это их наградили Нобелевской премией. С тех прошло уже десять лет.
Что такое графен и чем он так уникален?
Углерод — это материал, состоящий из кристаллической решетки, которую образуют шестиугольники атомов. Графен — это один слой решетки толщиной в 1 атом.
Отсюда — его первое уникальное свойство: самый тонкий.
- Графен в 60 раз тоньше мельчайшего из вирусов.
- В 3 тыс. раз тоньше бактерии.
- В 300 тыс. раз тоньше листа бумаги.
Такую структуру графен приобретает за счет sp2-гибридизации. Дело в том, что на внешней оболочке атома углерода расположены четыре электрона. При sp2-гибридизации три из них вступают в связь с соседними атомами, а четвертый находится в состоянии, которое образовывает энергетические зоны. В результате графен еще и прекрасно проводит электрический ток.
Уникальность графена в том, что он обладает такой же структурой, как и полупроводники, при этом он сам проводит электричество — как проводники. А еще у него высокая подвижность носителей заряда внутри материала. Поэтому графен в фото- и видеотехнике обнаруживает сигналы намного быстрее, чем другие материалы.
Графен обладает хорошей теплопроводностью, гибкостью и упругостью, он на 97% прозрачный. При этом, графен — самый прочный из известных материалов: прочнее стали и алмаза.
Графен – это пластина, представляющая собой кристаллическую решётку из двухмерных кристаллов углерода. Автором нового материала, учёным Уоллесом, в 1947 году были замечены необычные свойства графена. Он утверждал, что вещество по своим характеристикам аналогично металлам.
Что такое графен
Графен является аллотропной модификацией углерода. Такое состояние людям известно давно. Например, тот же самый алмаз является углеродом, но с особой кристаллической структурой. Аналогично этой ситуации – монослой графита представляет собой графен.
Долгое время считалось, что получить графен невозможно. Теоретические расчеты, сделанные в 30-х годах прошлого века, показывали, что монослой графита не может быть стабильным. Физическим аналогом графена является обычная пищевая пленка. Если вы возьмете ее кусочек, то она будет стремиться непременно скомкаться. Точно также ведет себя графен. В свободном пространстве он стремится собраться в комок, после чего превращается, по сути, в графит.
В 2004 году двое ученых – Андрей Гейм и Константин Новоселов нашли способ получения графена. Метод оказался настолько прост, что его может повторить любой в домашних условиях с помощью скотча. Ученые получили за свое открытие Нобелевскую премию.
Получение графена методом скотча
Чтобы повторить эксперимент Нобелевских лауреатов, понадобится скотч и кусочек графита. Скотч нужно приклеить на графит. Когда вы отдерете пленку от материала, на ней останется слой вещества. Но, он будет еще недостаточно тонким, чтобы называться графеном и получить уникальные свойства. Этот слой нужно еще несколько раз снять другой лентой скотча, пока не останется слой вещества толщиной в 1 атом, рассмотреть который можно лишь в микроскоп.
Углеродный наноматериал используют при изготовлении сенсорных экранов с диагональю в несколько метров. Это позволяет получить сенсорные дисплеи, которые можно будет скручивать в трубку для переноски.
Графен в России
В России собственная графеновая индустрия пока только складывается.
Причастные крупные корпорации, например «Росатом», «Ростех», «Роснефть», «Газпром», пока не афишируют тему графеновых материалов, испытывая готовые продукты, например уплотнители от АО «НП «Унихимтех»» (Подольск) на основе графеносодержащих мультислойных структур, графеновые смазки от ООО «ПКФ Альянс» (Санкт-Петербург), корозионно-стойкие покрытия от ООО «Глобал АКЗ».
Интервью профессора, доктора химических наук Дарьи Андреевой
«Сейчас одно из наиболее востребованных применений графена — это теплоотвод в электронных устройствах. В нашей лаборатории сейчас есть проект, направленный на решение этой задачи. Мы разрабатываем теплопроводную пасту для микроэлектроники на основе наших графеновых нанопластин»,— рассказал нам генеральный директор ООО «Русграфен» (Протвино) Максим Рыбин. Кроме того, в ООО «Русграфен» совместно с ООО «ГрафенОкс» (Черноголовка) научились делать различные виды графеновых красок и чернил для гибкой электроники. «Мы можем наносить тонким слоем чернила в качестве активного элемента сенсора и электропроводящие краски в качестве электродов»,— пояснил Максим Рыбин.
По словам генерального директора ООО «Актив-нано» (Санкт-Петербург) Галины Черник, компания разработала тонкорасщепленный графит (few-layer graphene, малослойный графен). Продукт изготавливают с помощью механических методов, без химических реагентов и высоких температур. Окисления углеродного материала не происходит. Удельная площадь поверхности малослойного графена составляет 250–500 кв. м/г, что соответствует средней толщине в пять-десять слоев атомов углерода. Удельная электропроводность материала достигает 100–200 сименс на сантиметр, что в несколько раз выше, чем у электропроводящих саж. Порошок малослойного графена можно применять в электропроводящих и теплопроводящих материалах и в качестве твердой смазки в порошковой металлургии.
Во-первых, он все еще очень дорогой. При этом пока нельзя однозначно посчитать, сколько его нужно и для каких целей. Для этого материала нет единой шкалы измерения, так как он может иметь разную структуру — в зависимости от способа получения.
Описание графена. Открытие графена:
Графен – это двумерная аллотропная форма углерода, в которой объединённые в гексагональную кристаллическую решётку атомы образуют слой толщиной в один атом. Атомы углерода в графене соединяются между собой sp 2 -связями. Графен в буквальном смысле представляет собой материю, ткань .
Углерод имеет множество аллотропов. Некоторые из них, например, алмаз и графит , известны давно, в то время как другие открыты относительно недавно (10-15 лет назад) – фуллерены и углеродные нанотрубки . Следует отметить, что известный многие десятилетия графит представляет собой стопку листов графена, т.е. содержит несколько графеновых плоскостей.
На основе графена получены новые вещества: оксид графена, гидрид графена (называемый графан) и флюорографен (продукт реакции графена со фтором).
Графен обладает уникальными свойствами, что позволяет его использовать в различных сферах. Предполагается, что графен может стать отличной заменой кремнию, особенно в полупроводниковой промышленности, и другим химическим элементам.
Графен был получен двумя британскими учеными российского происхождения Константином Новоселовым и Андреем Геймом, работающими в Университете Манчестера. За «передовые опыты с двумерным материалом – графеном» Константин Новоселов и Андрей Гейм в 2010 г. были удостоены Нобелевской премии. Для получения графена ученые использовали подручные материалы – кусок графита и обычный скотч. Ученые нанесли на липкую ленту небольшое количество графита, после чего ее много раз склеивали и расклеивали ленту, каждый раз разделяя (отшелушивая) вещество пополам. Эти действия ученые проводили до тех пор, пока от образца графита не остался один, последний – прозрачный слой – графен, который перенесли на подложку. Данный способ получения графена именуется методом “отшелушивания”.
Свойства и преимущества графена:
– графен является самым прочным материалом на Земле. В 300 раз прочнее стали . Лист графена площадью в один квадратный метр и толщиной, всего лишь в один атом, способен удерживать предмет массой 4 килограмма. Графен, как салфетку, можно сгибать, сворачивать, растягивать. Бумажная салфетка рвется в руках. С графеном такого не случится,
– благодаря двумерной структуре графена, он является очень гибким материалом, что позволит использовать его, например, для плетения нитей и других верёвочных структур. При этом тоненькая графеновая «верёвка» по прочности будет аналогична толстому и тяжёлому стальному канату,
– в определённых условиях у графена активируется ещё одна способность, которая позволяет ему «залечивать» «дырки» в своей кристаллической структуре в случае её повреждений,
– графен обладает более высокой электропроводностью. Графен практически не имеет сопротивления. У графена в 70 раз мобильность электронов выше, чем у кремния . Так, подвижность зарядов графена составляет более 1 000 000 см 2 /В∙с. Скорость электронов в графене составляет 10 000 км/с, хотя в обычном проводнике скорость электронов порядка 100 м/с,
– обладает высокой электроемкостью. Удельная энергоемкость графена приближается к 65 кВт*ч/кг. Данный показатель в 47 раз превышает тот, который имеют столь распространенные ныне литий-ионные аккумуляторы ,
– обладает высокой теплопроводностью. Он в 10 раз теплопроводнее меди. Его теплопроводность составляет около 5000 Вт/м∙К,
– характерна полная оптическая прозрачность. Он поглощает всего 2,3% света и оптически прозрачен в широком диапазоне от UV до far-IR,
– графеновая плёнка пропускает молекулы воды и при этом задерживает все остальные, что позволяет использовать ее как фильтр для воды,
– самый легкий материал. В 6 раз легче пера,
– инертность к окружающей среде,
– впитывает радиоактивные отходы,
– благодаря Броуновскому движению (тепловым колебаниям) атомов углерода в листе графена последний способен «производить» электрическую энергию,
– является основой для сборки различных не только самостоятельных двумерных материалов, но и многослойных двумерных гетероструктур,
– при протекании соленой воды по листу графена последний способен генерировать электрическую энергию за счет преобразования кинетической энергии движения потока соленой воды в электрическую (т.н. электрокинетический эффект),
– графен является гидрофобным и абсолютно непроницаем (за исключением воды) материалом для жидкостей и газов, в том числе агрессивных соединений,